【題目】如圖,已知BD平分∠ABC. 請補全圖形后,依條件完成解答.

(1)在直線BC下方畫∠CBE,使∠CBE與∠ABC互補;

(2)在射線BE上任取一點F,過點F畫直線FGBDBC于點G;

(3)判斷∠BFG與∠BGF的數(shù)量關系,并說明理由.

【答案】(1)畫圖見解析;(2)畫圖見解析;(3)BFG=BGF,理由見解析.

【解析】

(1)如下圖,延長AB至點E即可;

(2)如下圖,按照題意在射線BE上任取一點F,再過點FFG∥BDBC于點G即可;

(3)根據(jù)“角平分線的定義和平行線的性質”結合“已知條件”進行分析解答即可.

(1)如下圖圖中∠CBE為所求角

(2)如上圖圖中線段FG為所求線段

(3)∠BFG=∠BGF,理由如下

BDFG,

∴∠1=3,2=4

BD平分∠ABC,

∴∠3=4,

∴∠1=2,即∠BFG=BGF.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(xn+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2.當﹣1<x<1時,化簡 [x]+x+[x)的結果是__________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次構造勾股數(shù)的探究性學習中,老師給出了下表:

其中為正整數(shù),且

)觀察表格,當, 時,此時對應的、的值能否為直角三角形三邊的長?說明你的理由.

)探究, , 之間的關系并用含、的代數(shù)式表示: __________ __________, __________

)以 , 為邊長的三角形是否一定為直角三角形?如果是,請說明理由;如果不是,請舉出反例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖A在數(shù)軸上所對應的數(shù)為﹣2

1)點B在點A右邊距A4個單位長度,求點B所對應的數(shù);

2)在(1)的條件下,點A以每秒2個單位長度沿數(shù)軸向左運動,點 B 以每秒2個單位長度沿數(shù)軸向右運動,當點A運動到﹣6所在的點處時,求A,B兩點間距離.

3)在2)的條件下,現(xiàn)A點靜止不動,B點再以每秒2個單位長度沿數(shù)軸向左運動時,經過多長時間A,B兩點相距4個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小黃準備給長8m,寬6m的長方形客廳鋪設瓷磚,現(xiàn)將其劃分成一個長方形ABCD區(qū)域Ⅰ(陰影部分)和一個環(huán)形區(qū)域Ⅱ(空白部分),其中區(qū)域Ⅰ用甲、乙、丙三種瓷磚鋪設,且滿足PQ∥AD,如圖所示.

(1)若區(qū)域Ⅰ的三種瓷磚均價為300元/m2 , 面積為S(m2),區(qū)域Ⅱ的瓷磚均價為200元/m2 , 且兩區(qū)域的瓷磚總價為不超過12000元,求S的最大值;
(2)若區(qū)域Ⅰ滿足AB:BC=2:3,區(qū)域Ⅱ四周寬度相等
①求AB,BC的長;
②若甲、丙兩瓷磚單價之和為300元/m2 , 乙、丙瓷磚單價之比為5:3,且區(qū)域Ⅰ的三種瓷磚總價為4800元,求丙瓷磚單價的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AC為對角線,AC=BC=5,AB=6,AE是△ABC的中線,求△ACE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題
(1)計算:(﹣2)3+( 2 sin45°
(2)分解因式:(y+2x)2﹣(x+2y)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題.

程大位,明代商人,珠算發(fā)明家被稱為珠算之父、卷尺之父.少年時,讀書極為廣博,對數(shù)學頗感興趣60歲時完成其杰作《直指算法統(tǒng)宗》簡稱《算法統(tǒng)宗》).

在《算法統(tǒng)宗》里記載了一道趣題一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚各幾丁?意思是100個和尚分100個饅頭,如果大和尚1人分3,小和尚3人分1,正好分完.試問大、小和尚各多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學改革學生的學習模式,變“老師要學生學習”為“學生自主學習”,培養(yǎng)了學生自主學習的能力.小華與小明同學就“你最喜歡哪種學習方式”隨機調查了他們周圍的一些同學,根據(jù)收集到的數(shù)據(jù)繪制了以下兩個不完整的統(tǒng)計圖(如圖).

請根據(jù)上面兩個不完整的統(tǒng)計圖回答以下4個問題:

(1)這次抽樣調查中,共調查了_____名學生.

(2)補全條形統(tǒng)計圖中的缺項.

(3)在扇形統(tǒng)計圖中,選擇教師傳授的占_____%,選擇小組合作學習的占_____%.

(4)根據(jù)調查結果,估算該校1800名學生中大約有_____人選擇小組合作學習模式.

查看答案和解析>>

同步練習冊答案