【題目】在不透明的袋子中有四張標(biāo)著數(shù)字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲.
小明畫(huà)出樹(shù)狀圖如圖所示:
小華列出表格如下:
回答下列問(wèn)題:
(1)根據(jù)小明畫(huà)出的樹(shù)形圖分析,他的游戲規(guī)則是,隨機(jī)抽出一張卡片后 (填“放回”或“不放回”),再隨機(jī)抽出一張卡片;
(2)根據(jù)小華的游戲規(guī)則,表格中①表示的有序數(shù)對(duì)為 ;
(3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,你認(rèn)為誰(shuí)獲勝的可能性大?為什么?
【答案】(1)不放回;(2)(3,2);(3)小明獲勝的可能性大.
【解析】試題分析:(1)根據(jù)小明畫(huà)出的樹(shù)形圖知數(shù)字1在第一次中出現(xiàn),但沒(méi)有在第二次中出現(xiàn)可以判斷;
(2)根據(jù)橫坐標(biāo)表示第一次,縱坐標(biāo)表示第二次可以得到答案;
(3)根據(jù)樹(shù)狀圖和統(tǒng)計(jì)表分別求得其獲勝的概率,比較后即可得到答案.
試題解析:解:(1)觀察樹(shù)狀圖知:第一次摸出的數(shù)字沒(méi)有在第二次中出現(xiàn),∴小明的實(shí)驗(yàn)是一個(gè)不放回實(shí)驗(yàn);
(2)(3,2);
(3)小明獲勝的可能性大.理由如下:
∵根據(jù)小明的游戲規(guī)則,共有12種等可能的結(jié)果,數(shù)字之和為奇數(shù)的有8種,∴概率為: =;∵根據(jù)小華的游戲規(guī)則,共有16種等可能的結(jié)果,數(shù)字之和為奇數(shù)的有8種,∴概率為: =>,∴小明獲勝的可能性大.
故答案為:不放回;(3,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將圖1中的正方形剪開(kāi)得到圖2,則圖2中共有4個(gè)正方形;將圖2中的一個(gè)正方形剪開(kāi)得到圖3,圖3中共有7個(gè)正方形;將圖3中4個(gè)較小的正方中的一個(gè)剪開(kāi)得到圖4,則圖4中共有10個(gè)正方形,照這個(gè)規(guī)律剪下去……
(1)根據(jù)圖中的規(guī)律補(bǔ)全下表:
圖形標(biāo)號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | n | |
正方形個(gè)數(shù) | 1 | 4 | 7 | 10 |
(2)求第幾幅圖形中有2020個(gè)正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校要在一塊三角形空地上種植花草,如圖所示,AC=13 米、AB=14 米、BC=15 米, 若線段 CD 是一條引水渠,且點(diǎn) D 在邊 AB 上.已知水渠的造價(jià)每米 150 元.問(wèn):點(diǎn) D 與點(diǎn) C 距離多遠(yuǎn)時(shí),水渠的造價(jià)最低?最低造價(jià)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y=(k為常數(shù)).
(1)若點(diǎn)P1(,y1)和點(diǎn)P2(﹣,y2)是該反比例函數(shù)圖象上的兩點(diǎn),試?yán)梅幢壤瘮?shù)的性質(zhì)比較y1和y2的大小;
(2)設(shè)點(diǎn)P(m,n)(m>0)是其圖象上的一點(diǎn),過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M.若tan∠POM=2,PO=(O為坐標(biāo)原點(diǎn)),求k的值,并直接寫(xiě)出不等式kx+>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD中,∠A=∠C=90°,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN繞B點(diǎn)旋轉(zhuǎn),它的兩邊分別交AD,DC(或它們的延長(zhǎng)線)于E,F.
當(dāng)∠MBN繞B點(diǎn)旋轉(zhuǎn)到AE=CF時(shí)(如圖1),易證AE+CF=EF;
當(dāng)∠MBN繞B點(diǎn)旋轉(zhuǎn)到AE≠CF時(shí),在圖2和圖3這兩種情況下,上述結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,線段AE,CF,EF又有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)O為直線AB上的一點(diǎn),∠BOC=∠DOE=90°
(1)如圖1,當(dāng)射線OC、射線OD在直線AB的兩側(cè)時(shí),請(qǐng)回答結(jié)論并說(shuō)明理由;
①∠COD和∠BOE相等嗎?
②∠BOD和∠COE有什么關(guān)系?
(2)如圖2,當(dāng)射線OC、射線OD在直線AB的同側(cè)時(shí),請(qǐng)直接回答;
①∠COD和∠BOE相等嗎?
②第(1)題中的∠BOD和∠COE的關(guān)系還成立嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點(diǎn)O在AB上,經(jīng)過(guò)點(diǎn)A的⊙O與BC相切于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點(diǎn)E在邊BC上,將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,聯(lián)結(jié)FC,當(dāng)△EFC是直角三角形時(shí),那么BE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P是反比例函數(shù)圖象上任意一點(diǎn),以P為圓心,PO為半徑的圓與x軸交于點(diǎn) A、與y軸交于點(diǎn)B,連接AB.
(1)求證:P為線段AB的中點(diǎn);
(2)求△AOB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com