【題目】如圖所示,是一張放在平面直角坐標(biāo)系中的紙片,點(diǎn)與原點(diǎn)重合,點(diǎn)軸的正半軸上,點(diǎn)軸的正半軸上.已知,.將紙片的直角部分翻折,使點(diǎn)落在邊上,記為點(diǎn),為折痕,點(diǎn)軸上.

1)在如圖所示的直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,________,________;

2)線段上有一動(dòng)點(diǎn)(不與點(diǎn),重合)自點(diǎn)沿方向以每秒個(gè)單位長(zhǎng)度向點(diǎn)做勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,過點(diǎn)于點(diǎn),過點(diǎn)于點(diǎn),求四邊形的面積與時(shí)間之間的函數(shù)表達(dá)式.當(dāng)取何值時(shí),有最大值?最大值是多少?

3)當(dāng)為何值時(shí),,,三點(diǎn)構(gòu)成一個(gè)等腰三角形?并求出點(diǎn)的坐標(biāo).

【答案】1,;(2)當(dāng)時(shí),最大;(3時(shí),的坐標(biāo)為;時(shí),M的坐標(biāo)為

【解析】

1)由折疊可知AOE≌△ADE,根據(jù)全等三角形的對(duì)應(yīng)邊相等,以及對(duì)應(yīng)角相等得到OE=ED,∠ADE=AOE=90°AD=AO=3,根據(jù)勾股定理求出AB的長(zhǎng),設(shè)出ED=OE=x,在直角三角形BED中,根據(jù)勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,進(jìn)而寫出點(diǎn)E的坐標(biāo),再在直角三角形AOE中,根據(jù)勾股定理求出AE的長(zhǎng)即可;
2)根據(jù)兩組對(duì)邊互相平行得到四邊形MNDP為平行四邊形,又∠ADE為直角,所以MNDP為矩形,根據(jù)題意表示出AP的長(zhǎng),進(jìn)而得到PD的長(zhǎng),又由平行得到兩對(duì)同位角相等,進(jìn)而得到AMP∽△AED,根據(jù)相似三角形對(duì)應(yīng)邊成比例得到比例式,將各自的值代入表示出PM的長(zhǎng),由矩形的面積公式長(zhǎng)乘以寬和表示出的長(zhǎng)DP與寬PM,表示出矩形的面積,得到面積與t成二次函數(shù)關(guān)系,利用二次函數(shù)求最值的方法求出面積S的最大值及取得最大值時(shí)t的值即可;
3)根據(jù)題意發(fā)現(xiàn)有兩種情況滿足ADM為等腰三角形,①當(dāng)MD=MA時(shí),PAD中點(diǎn),由AD求出AP,進(jìn)而根據(jù)速度求出此時(shí)t的值,此時(shí)三角形AMD為等腰三角形,過MMF垂直于x軸,根據(jù)證明APM≌△AFM,求出MF=MP,即為M的縱坐標(biāo),求出FA,進(jìn)而求出OF的長(zhǎng),即為M的橫坐標(biāo),寫出M的坐標(biāo)即可;②當(dāng)AD=AM=3時(shí),由平行的兩對(duì)同位角相等,進(jìn)而得到AMP∽△AED,根據(jù)相似三角形對(duì)應(yīng)邊成比例得到比例式,求出AP的長(zhǎng),由速度求出此時(shí)t的值,此時(shí)三角形AMD為等腰三角形,過MMF垂直于x軸,證明APM≌△AFM,同理可得M的坐標(biāo).

解:(1)據(jù)題意,AOE≌△ADE,
OE=DE,∠ADE=AOE=90°,AD=AO=3
RtAOB中,AB5
設(shè)DE=OE=x,在RtBED中,根據(jù)勾股定理得:BD2+DE2=BE2,
22+x2=4-x2,解得x,

E0,),

RtAOE中,AE;

2,,且,

四邊形是矩形,

,

,

,

,

,

,

當(dāng)s時(shí),;

3為等腰三角形有以下兩種情況:

①當(dāng)時(shí),點(diǎn)的中點(diǎn),

s

s,

當(dāng)時(shí),,三點(diǎn)構(gòu)成一個(gè)等腰三角形,

如圖1,過點(diǎn)于點(diǎn),

APMAFM

,

AAS),

,

,

此時(shí)點(diǎn)的坐標(biāo)為,

②當(dāng)時(shí),

,

,即,

s,

當(dāng)s時(shí),,,三點(diǎn)構(gòu)成一個(gè)等腰三角形,

如圖2,過點(diǎn)于點(diǎn),

AMFAMP中,

AAS),

,,

,

此時(shí)點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點(diǎn)C,交弦AB于點(diǎn)D.已知:AB, CD.

1)求作此殘片所在的圓(不寫作法,保留作圖痕跡)

2)求(1)中所作圓的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,線段AC⊙O的直徑,過A點(diǎn)作直線BF⊙OAB兩點(diǎn),過A點(diǎn)作∠FAC的角平分線交⊙OD,過DAF的垂線交AFE

1)證明DE⊙O的切線;

2)證明AD22AEOA;

3)若⊙O的直徑為10DE+AE4,求AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點(diǎn),軸交于點(diǎn),拋物線經(jīng)過,兩點(diǎn),與軸的另一交點(diǎn)為

1)求拋物線的解析式;

2為拋物線上一點(diǎn),直線軸交于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);

3)在直線下方的拋物線上是否存在點(diǎn),使得,如果存在這樣的點(diǎn),請(qǐng)求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)蛟龍號(hào)深潛器目前最大深潛極限為706268米某天該深潛器在海面下1800米處作業(yè)(如圖,測(cè)得正前方海底沉船C的俯角為45°,該深潛器在同一深度向正前方直線航行2000米到B點(diǎn),此時(shí)測(cè)得海底沉船C的俯角為60°請(qǐng)判斷沉船C是否在蛟龍號(hào)深潛極限范圍內(nèi)?并說明理由(精確到001(參考數(shù)據(jù):1414,1732

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在蘭州市開展的體育、藝術(shù)2+1”活動(dòng)中,某校根據(jù)實(shí)際情況,決定主要開設(shè)A:乒

乓球,B:籃球,C:跑步,D:跳繩這四種運(yùn)動(dòng)項(xiàng)目.為了解學(xué)生喜歡哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)你結(jié)合圖中信息解答下列問題:

1)樣本中喜歡B項(xiàng)目的人數(shù)百分比是    ,其所在扇形統(tǒng)計(jì)圖中的圓心角的度數(shù)是    

2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)已知該校有1000人,根據(jù)樣本估計(jì)全校喜歡乒乓球的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】建造一個(gè)面積為130m2的長(zhǎng)方形養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠墻,墻長(zhǎng)為a米,另三邊用竹籬笆圍成,如果籬笆總長(zhǎng)為33米.

1)求養(yǎng)雞場(chǎng)的長(zhǎng)與寬各為多少米?

2)若10a18,題中的解的情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)是菱形邊上一點(diǎn),點(diǎn)的延長(zhǎng)線上

1)如圖,若,,求的度數(shù);

2)如圖,若的中點(diǎn),,求的值;

3)如圖,若,點(diǎn)是線段的中點(diǎn),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】車間有20名工人,某天他們生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)如下表.

車間20名工人某一天生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)表

生產(chǎn)零件的個(gè)數(shù)(個(gè))

9

10

11

12

13

15

16

19

20

工人人數(shù)(人)

1

1

6

4

2

2

2

1

1

1)求這一天20名工人生產(chǎn)零件的平均個(gè)數(shù);

2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備實(shí)行“每天定額生產(chǎn),超產(chǎn)有獎(jiǎng)”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進(jìn)行分析,你將如何確定這個(gè)“定額”?

查看答案和解析>>

同步練習(xí)冊(cè)答案