【題目】如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC是正方形,點(diǎn)A,C的坐標(biāo)分別為(2,0),(0,2),D是x軸正半軸上的一點(diǎn)(點(diǎn)D在點(diǎn)A的右邊),以BD為邊向外作正方形BDEF(E,F(xiàn)兩點(diǎn)在第一象限),連接FC交AB的延長線于點(diǎn)G.若反比例函數(shù)的圖象經(jīng)過點(diǎn)E,G兩點(diǎn),則k的值為 ______________.
【答案】5
【解析】分析: 過F作FN垂直于x軸,交CB延長線于點(diǎn)M,利用AAS得到三角形ABD與三角形BMF全等, 利用全等三角形對(duì)應(yīng)邊相等得到AD=FM,進(jìn)而表示出F坐標(biāo), 根據(jù)B為CM中點(diǎn),得出G的CF中點(diǎn),表示出G坐標(biāo),進(jìn)而得出E坐標(biāo), 把G與E代入反比例解析式求出a的值,確定出E坐標(biāo),代入反比例解析式求出k的值即可.
詳解: 過F作FN⊥x軸,交CB的延長線于點(diǎn)M,過E作EH⊥x軸,交x軸于點(diǎn)H,
∵∠FBM+∠MBD=90°,∠MBD+∠ABD=90°,
∴∠FBM=∠ABD,
∵四邊形BDEF為正方形,
∴BF=BD,
在△ABD和△BMF中,
∠BAD=∠BMF,∠ABD=∠MFB,BD=BF,
∴△ABD≌△BMF(AAS),
設(shè)AD=FM=a,則有F(4,2+a),C(0,2),
由三角形中位線可得G為CF的中點(diǎn),
∴G(2,2+12a),同理得到△DHE≌△BAD,
∴EH=AD=a,OH=OA+AD+DH=4+a,
∴E(4+a,a),∴2(2+12a)=a(4+a),即a2+3a-4=0,解得:a=1或a=-4(舍去),
∴E(5,1),
把F代入反比例解析式得:k=5.
故答案為:5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=22,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)數(shù)軸上點(diǎn)B表示的數(shù) ;點(diǎn)P表示的數(shù) (用含t的代數(shù)式表示)
(2)若M為AP的中點(diǎn),N為BP的中點(diǎn),在點(diǎn)P運(yùn)動(dòng)的過程中,線段MN的長度是 .
(3)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問多少秒時(shí)P、Q之間的距離恰好等于2?
(4)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩城相距600千米,一輛客車從A城開往B城,車速為每小時(shí)80千米,同時(shí)一輛出租車從B城開往A城,車速為毎小時(shí)100千米,設(shè)客車出時(shí)間為t.
(1)【探究】 若客車、出租車距B城的距離分別為y1、y2 , 寫出y1、y2關(guān)于t的函數(shù)關(guān)系式,并計(jì)算當(dāng)y1=200千米時(shí)y2的値.
(2)【發(fā)現(xiàn)】 設(shè)點(diǎn)C是A城與B城的中點(diǎn),
(Ⅰ)哪個(gè)車會(huì)先到達(dá)C?該車到達(dá)C后再經(jīng)過多少小時(shí),另一個(gè)車會(huì)到達(dá)C?
(Ⅱ)若兩車扣相距100千米時(shí),求時(shí)間t.
(3)【決策】 己知客車和出租車正好在A,B之間的服務(wù)站D處相遇,此時(shí)出租車乘客小王突然接到開會(huì)通知,需要立即返回,此時(shí)小王有兩種選擇返回B城的方案:
方案一:繼續(xù)乘坐出租車,到達(dá)A城后立刻返回B城(設(shè)出租車調(diào)頭時(shí)間忽略不計(jì));
方案二:乘坐客車返回城.
試通過計(jì)算,分析小王選擇哪種方式能更快到達(dá)B城?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,DE∥BC,交AB于點(diǎn)E,DF∥AB,交BC于點(diǎn)F,當(dāng)△ABC滿足_________條件時(shí),四邊形BEDF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C為AB延長線上一點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AC方向以lcm/s的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)以相同的速度沿CA方向運(yùn)動(dòng),當(dāng)兩點(diǎn)相遇時(shí)停止運(yùn)動(dòng),過點(diǎn)P作AB的垂線,分別交⊙O于點(diǎn)M和點(diǎn)N,已知⊙O的半徑為l,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)若AC=5,則當(dāng)t=時(shí),四邊形AMQN為菱形;當(dāng)t=時(shí),NQ與⊙O相切;
(2)當(dāng)AC的長為多少時(shí),存在t的值,使四邊形AMQN為正方形?請(qǐng)說明理由,并求出此時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)與反比例函數(shù)的圖象交于A,B兩點(diǎn),A點(diǎn)的橫坐標(biāo)為2,AC⊥x軸于點(diǎn)C,連接BC.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn),且滿足△OPC與△ABC的面積相等,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角∠O的內(nèi)部有一滑動(dòng)桿AB,當(dāng)端點(diǎn)A沿直線AO向下滑動(dòng)時(shí),端點(diǎn)B會(huì)隨之自動(dòng)地沿直線OB向左滑動(dòng),如果滑動(dòng)桿從圖中AB處滑動(dòng)到A′B′處,那么滑動(dòng)桿的中點(diǎn)C所經(jīng)過的路徑是( )
A.直線的一部分
B.圓的一部分
C.雙曲線的一部分
D.拋物線的一部分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊三角形ABC的邊長為2,E、F、G分別是邊AB、BC、CA的點(diǎn),且AE=BF=CG,設(shè)△EFG的面積為y,AE的長為x,則y與x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為1cm/s.連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<4),解答下列問題:
(1)設(shè)△APQ的面積為S,當(dāng)t為何值時(shí),S取得最大值?S的最大值是多少?
(2)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當(dāng)四邊形PQP′C為菱形時(shí),求t的值;′
(3)當(dāng)t為何值時(shí),△APQ是等腰三角形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com