精英家教網 > 初中數學 > 題目詳情

【題目】已知⊙O的直徑為10,點A,點B,點C⊙O上,∠CAB的平分線交⊙O于點D.

(Ⅰ)如圖,若BC⊙O的直徑,AB=6,求AC,BD,CD的長;

(Ⅱ)如圖,若∠CAB=60°,求BD的長.

【答案】1AC=8,BD=CD=5;(25

【解析】

試題()利用圓周角定理可以判定△CAB△DCB是直角三角形,利用勾股定理可以求得AC的長度;利用圓心角、弧、弦的關系推知△DCB也是等腰三角形,所以利用勾股定理同樣得到BD=CD=5

)如圖,連接OB,OD.由圓周角定理、角平分線的性質以及等邊三角形的判定推知△OBD是等邊三角形,則BD=OB=OD=5

試題解析:()如圖,∵BC⊙O的直徑,

∴∠CAB=∠BDC=90°

在直角△CAB中,BC=10,AB=6,

由勾股定理得到:AC=

∵AD平分∠CAB

,

∴CD=BD

在直角△BDC中,BC=10CD2+BD2=BC2,

易求BD=CD=5

)如圖,連接OB,OD

∵AD平分∠CAB,且∠CAB=60°,

∴∠DAB=∠CAB=30°,

∴∠DOB=2∠DAB=60°

∵OB=OD

∴△OBD是等邊三角形,

∴BD=OB=OD

∵⊙O的直徑為10,則OB=5

∴BD=5

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點,連接DE.過點AAFDE,垂足為F,⊙O經過點C、D、F,與AD相交于點G

(1)求證:△AFG∽△DFC;

(2)若正方形ABCD的邊長為4,AE=1,求O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:PAPB、CD分別切⊙OA、B、E三點,PA=6.求:

(1)PCD的周長;

(2)若∠P=50°,求∠COD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O為Rt△ABC的直角邊AC上一點,以OC為半徑的圓與斜邊AB相切于點D,P是弧CD上任意一點,過點P作O的切線,交BC于點M,交AB于點N,已知AB=5,AC=4.

(1)△BMN的周長等于多少

(2)⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線yax2+bx+c上部分點的橫坐標x,縱坐標y的對應值如表所示.

x

﹣3

﹣2

﹣1

0

1

y

﹣6

0

4

6

6

下列說法:拋物線與y軸的交點為(0,6); 拋物線的對稱軸在y軸的右側;拋物線一定經過點(3,0);在對稱軸左側,yx增大而減。不等式ax2+(b﹣3)x+c﹣6>0解集為﹣2<x<0.其中說法正確的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在扇形OAB中,∠AOB=110°,半徑OA=18,將扇形OAB沿過點B的直線折疊,點O恰好落在弧AB上的點D處,折痕交OA于點C,則弧AD的長為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖乙,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=DAE=90°,點P為射線BD,CE的交點.

(1)如圖甲,將△ADE繞點A 旋轉,當C、D、E在同一條直線上時,連接BD、BE,則下列給出的四個結論中,其中正確的是_____

BD=CEBDCE③∠ACE+∠DBC=45°BE2=2(AD2+AB2

(2)若AB=4,AD=2,把△ADE繞點A旋轉,

①當∠EAC=90°時,求PB的長;

②求旋轉過程中線段PB長的最大值.

     

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,給出下列五條結論: abc<0;4ac-b2<0;4a+c<2b;3b+2c<0;m(am+b)+b<a(m≠-1).其中正確的結論是_________(把所有正確的結論的序號都填寫在橫線上)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在如圖所示的平面直角坐標系中,橋孔拋物線對應的二次函數關系式是y=﹣x2,當水位上漲1m時,水面寬CD2m,則橋下的水面寬AB_____m

查看答案和解析>>

同步練習冊答案