【題目】如圖,在△ABC中,∠ABC=45°,AD⊥BC于點(diǎn)D,點(diǎn)E在AD上,且DE=DC.
(1)求證:△BDE≌△ADC;
(2)若BC=8.4,tanC= ,求DE的長(zhǎng).

【答案】
(1)證明:∵AD⊥BC,

∴∠ADB=∠ADC=90°,

∵∠ABC=45°,

∴∠BAD=45°,

∴∠ABC=∠BAD,

∴AD=BD,

在△BDE和△ADC中,

,

∴△BDE≌△ADC(SAS)


(2)解:設(shè)DE=x,

∵DE=DC,

∴DC=x,

∵tanC= ,

∴AD=2.5x,

∵AD=BD,

∴BD=2.5x,

∴BC=BD+CD=3.5x,

∵BC=8.4,

∴x=2.4,

DE=2.4


【解析】(1)由AD⊥BC可得∠ADB=∠ADC=90°,又∠ABC=45°易得∠ABC=∠BAD,可得AD=BD,由SAS定理可得△BDE≌△ADC;(2)設(shè)DE=x,因?yàn)閠anC= 可得AD=2.5x,可得BC=3.5x,由BC=8.4,可解得x,可得DE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓形紙片⊙O的直徑為2,將其沿著兩條互相垂直的直徑折疊,得到四層的扇形,將最上的一層“撐”開(kāi)來(lái),“鼓”成一個(gè)無(wú)底的圓錐,則這個(gè)圓錐的高是(
A.
B.
C.
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在反比例函數(shù)y= (x>0)的圖象上有點(diǎn)P1、P2、P3、P4 , P5 , 它們的橫坐標(biāo)依次為2,4,6,8,10,分別過(guò)這些點(diǎn)作x軸與y軸的垂線,圖中所構(gòu)成的陰影部分的面積從左到右依次為S1 , S2 , S3 , S4 , 則S1+S2+S3+S4的值為(
A.4.5
B.4.2
C.4
D.3.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】樂(lè)樂(lè)是一名健步運(yùn)動(dòng)的愛(ài)好者,她用手機(jī)軟件記錄了某個(gè)月(30天)每天健步走的步數(shù)(單位:萬(wàn)步),并將記錄結(jié)果繪制成了如圖所示的統(tǒng)計(jì)圖(不完整).

(1)若樂(lè)樂(lè)這個(gè)月平均每天健步走的步數(shù)為1.32萬(wàn)步,試求她走1.3萬(wàn)步和1.5萬(wàn)步的天數(shù);
(2)求這組數(shù)據(jù)中的眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,b)、B(a,0)、D(d,0),且a、b、d滿足=0,DEx軸且∠BED=ABD,BEy軸于點(diǎn)C,AEx軸于點(diǎn)F

(1)求點(diǎn)A、B、D的坐標(biāo);

(2)求點(diǎn)E、F的坐標(biāo);

(3)如圖,點(diǎn)P(0,1)作x軸的平行線,在該平行線上有一點(diǎn)Q(點(diǎn)Q在點(diǎn)P的右側(cè))使∠QEM=45°,QEx軸于點(diǎn)N,MEy軸的正半軸于點(diǎn)M,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題。
(1)如圖①,四邊形ABCD是正方形,點(diǎn)G是BC上的任意一點(diǎn),BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,探究BF,DE,EF之間的數(shù)量關(guān)系,第一學(xué)習(xí)小組合作探究后,得到DE﹣BF=EF,請(qǐng)證明這個(gè)結(jié)論;
(2)若(1)中的點(diǎn)G在CB的延長(zhǎng)線上,其余條件不變,請(qǐng)?jiān)趫D②中畫(huà)出圖形,并直接寫(xiě)出此時(shí)BF,DE,EF之間的數(shù)量關(guān)系;
(3)如圖③,四邊形ABCD內(nèi)接于⊙O,AB=AD,E,F(xiàn)是AC上的兩點(diǎn),且滿足∠AED=∠BFA=∠BCD,試判斷AC,DE,BF之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別在OA,OC上

(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請(qǐng)你從中選取兩個(gè)條件證明△BEO≌△DFO;

(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠BOC=70°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)

(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE=   °;

(2)如圖②,將直角三角板DOE繞點(diǎn)O逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)到某個(gè)位置,若OC恰好平分∠BOE,求∠COD的度數(shù);

(3)如圖③,將直角三角板DOE繞點(diǎn)O轉(zhuǎn)動(dòng),如果OD始終在∠BOC的內(nèi)部,試猜想∠BOD和∠COE有怎樣的數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),點(diǎn)P到點(diǎn)A,BD的距離分別為1,2,.△ADP沿點(diǎn)A旋轉(zhuǎn)至ABP,連接PP,并延長(zhǎng)APBC相交于點(diǎn)Q.

(1)求證:APP是等腰直角三角形;

(2)BPQ的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案