如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(0,6),點(diǎn)B坐標(biāo)為(2
3
,2)
,BC∥y軸且與x軸交于點(diǎn)C,直線OB與直線AC相交于點(diǎn)P.
(1)求點(diǎn)P的坐標(biāo);
(2)若以點(diǎn)O為圓心,OP的長為半徑作⊙O(如圖2),求證:直線AC與⊙O相切于點(diǎn)P;
(3)過點(diǎn)B作BD∥x軸與y軸相交于點(diǎn)D,以點(diǎn)O為圓心,r為半徑作⊙O,使點(diǎn)D在⊙O內(nèi),點(diǎn)C在⊙O外;以點(diǎn)B為圓心,R為半徑精英家教網(wǎng)作⊙B,若⊙O與⊙B相切,試分別求出r,R的取值范圍.
分析:(1)設(shè)直線OB的解析式為y=k1x,可得k1=
3
3
,所以直線OB的解析式為y=
3
3
x;設(shè)直線AC的解析式為y=k2x+6,根據(jù)點(diǎn)C(2
3
,0)在直線AC上得k2=-
3
,所以直線AC的解析式為y=-
3
x+6,直線AC與直線OB的解析式聯(lián)立方程組,解得點(diǎn)P的坐標(biāo);
(2)利用三角函數(shù)值求得∠BOC=30°,又∠ACO=60°所以∠OPC=90°,故以O(shè)P為半徑的⊙O與直線AC相切于點(diǎn)P;
(3)D點(diǎn)坐標(biāo)為(0,2),C點(diǎn)坐標(biāo)為(2
3
,0),要使點(diǎn)D在⊙O內(nèi),點(diǎn)C在⊙O外,則⊙O的半徑r應(yīng)滿足2<r<2
3
,因?yàn)椤袿與⊙B相切,故R=4-r或R=4+r,結(jié)合2<r<2
3
可知4-2
3
<R<2
6<R<4+2
3
解答:(1)解:設(shè)直線OB的解析式為y=k1x,
∵點(diǎn)B(2
3
,2)在直線OB上,
2=2
3
k1
k1=
3
3

∴直線OB的解析式為y=
3
3
x,
設(shè)直線AC的解析式為y=k2x+6,
∵點(diǎn)C(2
3
,0)在直線AC上,
0=2
3
k2+6
,k2=-
3
,
∴直線AC的解析式為y=-
3
x+6,
直線AC與直線OB的交點(diǎn)P滿足方程組
y=
3
3
x
y=-
3
x+6
,
解得
x=
3
3
2
y=
3
2
,
∴點(diǎn)P的坐標(biāo)為(
3
3
2
3
2
)
;

(2)證明:∵tan∠OAC=
OC
OA
=
2
3
6
=
3
3

∴∠OAC=30°,∠ACO=60°,
又∵tan∠BOC=
BC
OC
=
2
2
3
=
3
3

∴∠BOC=30°又∠ACO=60°,
∴∠OPC=90°,
故以O(shè)P為半徑的⊙O與直線AC相切于點(diǎn)P;

(3)解:∵D點(diǎn)坐標(biāo)為(0,2),C點(diǎn)坐標(biāo)為(2
3
,0),
要使點(diǎn)D在⊙O內(nèi),點(diǎn)C在⊙O外,則⊙O的半徑r應(yīng)滿足2<r<2
3
,
∵在Rt△BOC中,∠BOC=30°,BC=2,
∴OB=4,
∵⊙O與⊙B相切,故有R+r=4或R-r=4,
從而有R=4-r或R=4+r,
∵2<r<2
3
,
∴4-2
3
<R<2
6<R<4+2
3
點(diǎn)評(píng):主要考查了函數(shù)和幾何圖形的綜合運(yùn)用.解題的關(guān)鍵是會(huì)靈活的運(yùn)用函數(shù)圖象的性質(zhì)和交點(diǎn)的意義求出相應(yīng)的線段的長度或表示線段的長度,再結(jié)合具體圖形的性質(zhì)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請(qǐng)寫出平移后點(diǎn)A′的坐標(biāo),記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點(diǎn)C的坐標(biāo)為(-3,0).
(1)點(diǎn)A的坐標(biāo)為
(-3,2
2
(-3,2
2
,點(diǎn)B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點(diǎn)O為頂點(diǎn)且過點(diǎn)A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時(shí)間為多少秒時(shí),三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級(jí) 數(shù)學(xué) 上 題型:059

學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點(diǎn).

(3)請(qǐng)你猜一猜上述各點(diǎn)會(huì)在某一個(gè)函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時(shí),s的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級(jí)第一學(xué)期期中測評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對(duì)稱問題時(shí)發(fā)現(xiàn):

如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.

如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱.

(1)請(qǐng)?jiān)趫D2中畫出點(diǎn)、, 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱時(shí),除了說明P、、三點(diǎn)共線之外,還需證明;

(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),
(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請(qǐng)寫出平移后點(diǎn)A′的坐標(biāo),記作______.

查看答案和解析>>

同步練習(xí)冊(cè)答案